Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1339387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571947

RESUMO

Background: Porcine circovirus type 2 (PCV2) is a globally prevalent and recurrent pathogen that primarily causes slow growth and immunosuppression in pigs. Porcine circovirus type 3 (PCV3), a recently discovered virus, commonly leads to reproductive disorders in pigs and has been extensively disseminated worldwide. Infection with a single PCV subtype alone does not induce severe porcine circovirus-associated diseases (PCVD), whereas concurrent co-infection with PCV2 and PCV3 exacerbates the clinical manifestations. Pseudorabies (PR), a highly contagious disease in pigs, pose a significant threat to the swine industry in China. Methods: In this study, recombinant strains named rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 was constructed by using a variant strain XJ of pseudorabies virus (PRV) as the parental strain, with the TK/gE/gI genes deleted and simultaneous expression of PCV2 Cap, PCV3 Cap, and IL-4. The two recombinant strains obtained by CRISPR/Cas gE gene editing technology and homologous recombination technology has genetic stability in baby hamster Syrian kidney-21 (BHK-21) cells and is safe to mice. Results: rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 exhibited good safety and immunogenicity in mice, inducing high levels of antibodies, demonstrated 100% protection against the PRV challenge in mice, reduced viral loads and mitigated pathological changes in the heart, lungs, spleen, and lymph nodes during PCV2 challenge. Moreover, the recombinant viruses with the addition of IL-4 as a molecular adjuvant outperformed the non-addition group in most indicators. Conclusion: rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 hold promise as recombinant vaccines for the simultaneous prevention of PCV2, PCV3, and PRV, while IL-4, as a vaccine molecular adjuvant, effectively enhances the immune response of the vaccine.


Assuntos
Circovirus , Herpesvirus Suídeo 1 , Pseudorraiva , Suínos , Animais , Camundongos , Herpesvirus Suídeo 1/genética , Pseudorraiva/prevenção & controle , Interleucina-4/genética , Circovirus/genética , Vacinas Sintéticas
2.
Vet Microbiol ; 284: 109815, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37348208

RESUMO

African swine fever (ASF) is an acute infectious disease that poses a high lethality risk to domestic pigs and wild boars, causing substantial economic losses to the global pig industry. The prevention and control of ASF remain challenging, necessitating the urgent development of a safe and effective vaccine. This study focused on the essential structural protein p72 of ASFV (encoded by the B646L gene) and its chaperone protein pB602L (encoded by the B602L gene) as the target antigenic proteins. Based on CRISPR/Cas9 gene-editing technology, we constructed a live attenuated recombinant pseudorabies virus vector expressing the p72 and pB602L proteins (designated as rPRVXJ-EGFP/B602L/B646L), and assessed its immunization effect in mice. The recombinant virus rPRVXJ-EGFP/B602L/B646L successfully proliferated and demonstrated stable expression of the p72 and pB602L proteins in BHK-21 cells. Moreover, it exhibited excellent safety when used in mice and induced specific humoral and cellular immune responses targeting p72 and pB602L. In addition, it provided complete protection (100%) against the virulent PRV strain (PRV-XJ). These results indicate that the recombinant virus rPRVXJ-EGFP/B602L/B646L possesses robust immunogenicity and safety in mice. In conclusion, PRV represents a promising viral vector for expressing ASFV gene, and our study serves as an essential reference for the development of viral vector vaccines against ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Camundongos , Vírus da Febre Suína Africana/genética , Herpesvirus Suídeo 1/genética , Sus scrofa , Pseudorraiva/prevenção & controle , Vacinas Virais/genética
3.
Front Microbiol ; 13: 846079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308386

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) and pseudorabies (PR) are highly infectious swine diseases and cause significant financial loss in China. The respiratory system and reproductive system are the main target systems. Previous studies showed that the existing PR virus (PRV) and PRRS virus (PRRSV) commercial vaccines could not provide complete protection against PRV variant strains and NADC30-like PRRSV strains in China. In this study, the PRV variant strain XJ and NADC30-like PRRSV strain CHSCDJY-2019 are used as the parent for constructing a recombinant pseudorabies virus (rPRV)-NC56 with gE/gI/TK gene deletion and co-expressing NADC30-like PRRSV GP5 and M protein. The rPRV-NC56 proliferated stably in BHK-21 cells, and it could stably express GP5 and M protein. Due to the introduction of the self-cleaving 2A peptide, GP5 and M protein were able to express independently and form virus-like particles (VLPs) of PRRSV in rPRV-NC56-infected BHK-21 cells. The rPRV-NC56 is safe for use in mice; it can colonize and express the target protein in mouse lungs for a long time. Vaccination with rPRV-NC56 induces PRV and NADC30-like PRRSV specific humoral and cellular immune responses in mice, and protects 100% of mice from virulent PRV XJ strain. Furthermore, the virus-neutralizing antibody (VNA) elicited by rPRV-NC56 showed significantly lower titer against SCNJ-2016 (HP-PRRSV) than that against CHSCDJY-2019 (NADC30-like PRRSV). Thus, rPRV-NC56 appears to be a promising candidate vaccine against NADC30-like PRRSV and PRV for the control and eradication of the variant PRV and NADC30-like PRRSV.

4.
BMC Vet Res ; 18(1): 16, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983523

RESUMO

BACKGROUND: Porcine deltacoronavirus (PDCoV) is a new pathogenic porcine intestinal coronavirus, which has appeared in many countries since 2012. PDCoV disease caused acute diarrhea, vomiting, dehydration and death in piglets, resulted in significant economic loss to the pig industry. However, there is no commercially available vaccine for PDCoV. In this study, we constructed recombinant pseudorabies virus (rPRVXJ-delgE/gI/TK-S) expressing PDCoV spike (S) protein and evaluated its safety and immunogenicity in mice. RESULTS: The recombinant strain rPRVXJ-delgE/gI/TK-S obtained by CRISPR/Cas gE gene editing technology and homologous recombination technology has genetic stability in baby hamster syrian kidney-21 (BHK-21) cells and is safe to mice. After immunizing mice with rPRVXJ-delgE/gI/TK-S, the expression levels of IFN-γ and IL-4 in peripheral blood of mice were up-regulated, the proliferation of spleen-specific T lymphocytes and the percentage of CD4+ and CD8+ lymphocytes in mice spleen was increased. rPRVXJ-delgE/gI/TK-S showed good immunogenicity for mice. On the seventh day after booster immunity, PRV gB and PDCoV S specific antibodies were detected in mice, and the antibody level continued to increase, and the neutralizing antibody level reached the maximum at 28 days post- immunization (dpi). The recombinant strain can protect mice with 100% from the challenge of virulent strain (PRV XJ) and accelerate the detoxification of PDCoV in mice. CONCLUSION: The recombinant rPRVXJ-delgE/gI/TK-S strain is safe and effective with strong immunogenicity and is expected to be a candidate vaccine against PDCoV and PRV.


Assuntos
Infecções por Coronavirus , Herpesvirus Suídeo 1 , Glicoproteína da Espícula de Coronavírus/imunologia , Doenças dos Suínos , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Deltacoronavirus , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/imunologia , Camundongos , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia
5.
Vet Med Sci ; 7(3): 697-704, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33277984

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating viral diseases in the global pig industry, including China. Recently, we successfully isolated a porcine reproductive and respiratory syndrome virus (PRRSV) from lung tissue and peripheral blood of piglets at a farm from Dujiangyan in Sichuan, China, and named it the DJY-19 strain. The full-length genome sequence of DJY-19 shared 86.8%-94.1% nucleotide similarity with NADC30-like and NADC30 PRRSV strains. We compared the open reading frame (ORF) 5 gene of DJY-19 with 34 PRRSV strains from Genbank. Phylogenetic analysis showed that DJY-19 clustered with NADC30 strains, characterized by a predicted 131-amino-acid deletion in the nonstructural protein (NSP) 2. The results of homology analysis showed that the homology between DJY-19 and NADC30 (JN654459.1) strains was the highest (95.9%), whereas homology with other domestic strains was lower (80.9%-92.6%). Furthermore, we identified four recombination breakpoints in the DJY-19 genome; they separated the DJY-19 genome into four regions. The 8106-9128 nucleotide (nt) region of DIY-19 was highly similar to the TJ strain, and the 12106-12580 nt region of DIY-19 was highly similar to the JXA1-R strain. Our findings demonstrate that DJY-19 arose from the recombination of North America NADC30 strain and TJ strain and JXA1-R in China. The application of multiple attenuated vaccine strains has led to complex recombination of PRRSV strains in China. This study provides a theoretical basis for making a more reasonable PRRS virus control and prevention strategy.


Assuntos
Genoma Viral , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Animais , China , Filogenia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , Alinhamento de Sequência/veterinária , Sus scrofa , Suínos , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA